

Lisbeth Shooter, Executive Director SEGES

"Vets in Piglet Vitality " Congress, Düsseldorf

What is zinc?

Mineral zinc

- Zinc is a mineral that is vital to pigs' normal growth
- Maximum allowed inclusion according to feedstuff legislation is 150 ppm in feed for weaned pigs

Medicinal zinc

- For control of *E.coli* diarrhoea in weaned pigs
- Max 2,500 ppm in pig feed for max 14 days post-weaning
- Requires prescription

Medicinal use of zinc in Danish pig production

- Commonly used in weaner diets since the early 1990s
- 2004: Magistral ZnO allowed to control PWD – Max. level 2,500 ppm Zn, prescription required
- 2011: First registered ZnO product marketed
- 2014: Two additional ZnO products marketed
- June 2022: All marketed ZnO products will be withdrawn

Action plan – phasing out medicinal zinc in Danish pig production

Goal

- 1. No negative effect on animal welfare increased disease frequency
- 2. Maintaining a low and prudent antibiotic usage
- 3. Minimal negative effect on productivity and mortality

Action points

- 1. Research and development multiple disciplines and collaborators
- 2. Communication focus new knowledge needs to be implemented in the field
- 3. International focus an urgent issue for all EU member states

In recent years – reduction in zinc and antibiotic usage

Reduction driven by reduced dose of medicinal zinc in piglet diets

SEGES trial report no. 1101(2017):

2,500 ppm 1,500 ppm zinc = same productivity and AB usage

Implemented on many Danish pig farms resulting in a reduction in the national use of zinc oxide*

Few farms have fully phased out the use of medicinal zinc

*Based on questionnaire answers and reports from the field veterinarians

Weaning without zinc oxide:

- multifactorial and complex

Feeding: The best "tools" in the box

- Robust weaned pigs sow feeding high milk yield
- Supply of feed in the farrowing pen
- Restricted feeding post-weaning
- Low protein
- Low calcium
- Feed ingredients
- Additives

Alternatives to zinc oxide for piglets

- 1. 2,500 ppm zinc
- 2. 1,500 ppm zinc
- 3. 0 zinc
- 4. Seaweed from Ocean Harvest, Ireland
- 5. 'MiyaGold' from Huvepharma
- 6. 'GærPlus' from Danish Agro

Trial design (60 replicates, 4,200 piglets)

Group	1	2	3	4	5	6
Name	Positive control		Negative control	Seaweed product	Probiotic	Yeast product
Diet 1 (7-9 kg)	2,500 Zn*	1,500 Zn*	0 Zn*	1.5% OceanFeed Swine	2 kg/tonne MiyaGold	0.5 kg/tonne GærPlus
Diet 2 (9-15 kg)	0 Zn*	0 Zn*	0 Zn*	1.5% OceanFeed Swine	1 kg/tonne MiyaGold	0.5 kg/tonne GærPlus
Diet 3 (15-30 kg)	0 Zn*	0 Zn*	0 Zn*	1.5% OceanFeed Swine	0.5 kg/tonne MiyaGold	0.25 kg/tonne GærPlus

^{*}Zn = the level of medicinal zinc added

Conclusion

- 2,500 and 1,500 ppm medicinal zinc identical effect on productivity and treatments for diarrhoea
- 0 ppm medicinal zinc identical with the three alternative products

No Silver Bullet

ZZS 2019: Additives - a strategy to optimise gastric health

ZZS 2019: Multiple additives have been tested

Fatty acids and fatty acid derivatives

Lumance (Fatty acids, plant extracts, ess. oils)

Yeast

Encapsulated benzoic acid

White iodine plant extract

Fungal fermented rye

Probiotics

Essential oils

ZZS 2019: Additives: Points of attention?

• The effect (productivity, antiinflammatory or diarrhoea)?

Feed additives are often expensive - be critical of choice and effect!

In many cases, some effect on productivity

- But the effect is often poorly documented in terms of health and diarrhoea!

ZZS 2019: The most promising additives

Micronized ZnO

Inhibition of *E. coli* growth within 24 h of incubation

H. Wilhelm Schaumann GmbH

Product	Productivity	Diarrhoea
Lumance® (Fatty acids, plant extract, ess. oils)		
Provenia CF-Z (Encapsulated Benzoic acid)		-

SEGES Concept trial: The four selected concepts

	FraMelco	Trouw Nutrition	Evonik	Vitfoss
Reduced protein		X	X	X
Increased threonine/lysine		X	X	X
Monoglycerides	X			X
Organic acids	X	X	X	X
Probiotics		X	X	X
Fibre		X	X	X
Additional enzymes		X		X
Chelated minerals				X
Addition to drinking water		X	X	

Control diets, ingredients

Ingredients, %	Diet 1	Diet 2	Diet 3
Wheat	51	53	47
Barley	23	21	21
Soy prot. conc	13	6.7	2.7
Soybean meal		8	22
Potato protein	3	3.5	
Fish meal	2.8	1	
Protein, %	19.4	18.6	18.6

Trial design (63 replicates, 4,200 pigs)

	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6
	Positive control	Negative control	FraMelco	Trouw Nutrition	Evonik	Vitfoss
ppm Zn	2,500 Zn	0	0	0	0	0
7-9 kg, diet 1	2,500 Zn	0	0.4% LAC 34 0.4% C12 Dry	5% Nucleo 20% Vario	0.12% CreAmino	30% Mix 1
9-15 kg, diet 2	0	0	0.3% LAC 34 0.3% C12 Dry	5% Nucleo 8% Vario	0.12% CreAmino	17% Mix 2
15-30 kg, diet 3	0	0	0.2% LAC 34 0.2% C12 Dry	5% Nucleo	0.12% CreAmino	7.1% Mix 3
In drinking water				Selko 1.5 L/1000 L	Fecinor 50 g/1000 L	

Production results 7-30 kg

Diarrhoea treatments, days, 7-30 kg

No zinc

Negative control

2,500 ppm zinc

Positive control

Trouw

Evonik

Vitfoss

FraMelco

Total number of diarrhoea treatments, 7-30 kg

Costs of the concepts

	2,500 Zn	0 Zn	FraMelco	Trouw Nutrition	Evonik	Vitfoss
G/day	537a	516 ^b	523 ^b	548 ^b	515 ^b	530a
FU/kg gain	1.64 ^a	1.65 ^a	1.65 ^a	1.60 ^b	1.65ª	1.64 ^a
Production value/pig/day Index	100ª	96 ^b	97 ^b	104 ^b	96 ^b	99 ^a
Diff. Euro/pig	-	-0.26	-0.12	+0.33	-0.26	+0.03
Price diff. feed, Euro/pig	-	-0.13	+0.58	+1.49	+2.30	+0.93

Red: worse than 2500 Zn Green: better than 0 Zn

^{*1} FU = 8.8 MJ NE or 12.2 MJ DE

Conclusion

 Removal of zinc oxide from the feed lowered production value by approx. € 0.26 per pig

Effect on productivity or treatments for diarrhoea:

- Trouw Nutrition concept better than zinc oxide, but cost net approx. € 1.1 per pig
- Vitfoss concept level with zinc oxide, but cost net approx. € 0.9 per pig
- Remaining two concepts (FraMelco and Evonik) not different from the group given *no* zinc oxide

Zinc cannot be replaced by a single compound

Effects observed in trials may be attributed to:

- Low protein content
- Combination of additives
- Low calcium content
- Amino acid profile

Zinc in weaning diet vs nutritional measures in the entire period?

Reduced protein, why?

- Reduce amount of undigested protein in the hindgut
 - To reduce risk of osmotic diarrhoea
 - To prevent protein fermentation
 - Reduce microbial metabolites (NH3, amines) which damage colonic epithelium, interrupt mucosal function and structure, and increase villous atrophy
 - To reduce colonisation of E.coli

But also adverse effect on productivity

Reduced protein as an alternative to medicinal zinc: Aim of the study

 Four strategies for reducing protein post-weaning compared with positive (2,500 ppm Zn) and negative (0 Zn) control groups

Hypotheses:

- Medicinal zinc reduces diarrhoea treatment days by 35% compared to no zinc
- Reduced protein same effect but
 - Negative effect on daily gain (6-30 kg)

Trial design

- 6 treatment groups
- Approx. 75 replicates (pens) per treatment group
- 6,800 piglets age 25-27 days, weight 5.5-9.0 kg
- Experimental herd
- DanBred pigs
- Pelleted feed

Trial design

N=norm, L=low, H=high, VL=very low, M=middle

Feed composition

- Same level of soybean meal in all groups in each phase
 - Phase 1 (6-9 kg): 7%
 - Phase 2 (9-15 kg): 14%
 - Phase 3 (15-30 kg): 21%
 - Reduction of protein in the diet
 - Reducing soy protein concentrate, potato protein and fish meal

Results: Diarrhoea treatments, days, 6-30 kg

Group	1 NNN + Zn	2 NNN	3 LNN	4 LLH	5 VLHH	6 VLMH	
Treatments, days per pig							
Total, 6-30 kg	2.08 ^b	4.19 ^a					
	Difference groups 2 and 1: +2 treatment days = 50%						
Phase 2, 9-15 kg	1.57	2.83					
Phase 3, 15-30 kg	0.47	1.11				FO	

N=norm, L=low, VL=very low, H=high, M=middle

Results: Diarrhoea treatments, days, 6-30 kg

Group	1 NNN + Zn	2 NNN	3 LNN	4 LLH	5 VLHH	6 VLMH
Treatments, days per pig						
Total, 6-30 kg	2.08 ^b	4.19 ^a	3.75₹	3.10 ^b	3.68ª	3.24 ^a
Phase 1, 6-9 kg	0.04		ce groups 2 tment day=		0.11	0.17
Phase 2, 9-15 kg	1.57	2.83	2.39	1.77	2.10	1.65
Phase 3, 15-30 kg	0.47	1.11	1.31	1.20	1.47	1.42

Production results, 6-9 kg (6,800 piglets)

Group	1 N+Zn	2 N	3 L	4 L	5 VL	6 VL
Daily gain, g/day	184ª	184ª				
Feed conversion, Kg feed/kg gain	1.20 ^a	1.21 ^a				

N=norm, L=low, VL=very low

Production results, 6-9 kg (6,800 piglets)

Group	1 N+Zn	2 N	3 L	4 L	5 VL	6 VL
Daily gain, g/day	184ª	184ª	177 ^a	173 ^a		
Feed conversion, Kg feed/kg gain	1.20 ^a	1.21 ^a	1.28 ^b	1.32b		

N=norm, L=low, VL=very low

Production results, 6-9 kg (6,800 piglets)

Group	1 N+Zn	2 N	3 L	4 L	5 VL	6 VL	
Daily gain, g/day	184ª	184ª	177 ^a	173ª	148 ^b	143 ^b	
Feed conversion, Kg feed/kg gain	1.20ª	1.21a	1.28 ^b	1.32 ^b	1.43°	1.47°	

N=norm, L=low, VL=very low

Production results, 6-30 kg (6,800 piglets)

Group	1 NNN+Zn	2 NNN	3 LNN	4 LLH	5 VLHH	6 VLMH
Daily gain, g/day	520 ^a	519 ^a				
Feed conversion, Kg feed/kg gain	1.43ª	1.44 ^a				

N=norm, L=low, VL=very low, H=high, M=middle

Production results, 6-30 kg (6,800 piglets)

Group	1 NNN+Zn	2 NNN	3 LNN	4 LLH	5 VLHH	6 VLMH
Daily gain, g/day	520 ^a	519 ^a	516 ^{ab}	504 ^b		
Feed conversion, Kg feed/kg gain	1.43ª	1.44a	1.44 ^a	1.44 ^a		

N=norm, L=low, VL=very low, H=high, M=middle

Production results, 6-30 kg (6,800 piglets)

Group	1 NNN+Zn	2 NNN	3 LNN	4 LLH	5 VLHH	6 VLMH
Daily gain, g/day	520ª	519ª	516 ^{ab}	504b	517 ^{ab}	504 ^b
Feed conversion, Kg feed/kg gain	1.43 ^a	1.44ª	1.44 ^a	1.44	1.40 ^b	1.42 ^{ab}

N=norm, L=low, VL=very low, H=high, M=middle

What did we find?

- The best strategy: Low Low High
 - 25% drop in treatment days (hypothesis: 35%)
- Daily gain reduced by 15 g/day

Why not greater effect on diarrhoea with low protein?

Our protein levels (6-9 kg): 19%, 16.5% and 14%, respectively

Other trials:

- Yue et al (2008): Sign. effect from 23-19%, NS 19-17%
- Heo et al. (2010): Sign. effect from 25-19%
- Halas et al. (2007): Sign. effect from 24-18 %
- Kim et al. (2011): Sign. effect from 23-18.5%
- SEGES (2006): Sign. effect from 21-18%
- SEGES (2017): Sign. effect from 21-18%

Conclusion

- Medicinal zinc diarrhoea treatment days reduced by 50% compared with no zinc
- Low protein reduced diarrhoea treatment days by 25%
 - But zinc is better
- Low protein = low productivity
 - Partially compensated by subsequent high protein
- Reduced protein plays a role in the solution
- New SEGES recommendation: 17.5% protein in phases 1 and 2

Danish field experiences

Purpose:

Identify common features in weaner herds with no use of medicinal zinc

- Farms recruited mainly through network of field veterinarians
- Farm owners were interviewed:
 - Management, herd health, feed, hygiene, personnel, etc.

Additional information:

- Antibiotic usage Vetstat
- Feed recipes piglet diets
- Productivity reports
- Vaccination schemes

Results, Danish field experiences

Herd description 26 weaner herds (600,000 weaners/year)

Production scope	1,650-80,000 weaners per herd
Avg. lactation period	29.4 days
Weaning weight	5.5-8.5 kg
Avg. daily weight gain, 7-30 kg	462 g (nat. avg. 2018 = 462 g)
Avg. weaner mortality	2.1% (nat. avg. 2018 = 3.1%)

23/26 farms have weaned pigs without medicinal zinc for more than a year

Antibiotic use, in herds weaning without use of medicinal ZnO

Nat. avg. 2018, weaners = Approx. 10 ADD/100 animals 15/26 herds, pen level treatment the first 14 days post-weaning

Common approaches – Protein/lysine levels

Protein/lysine levels, piglet diets	Min	Max	Average	Recommended levels
SID protein (g/FU)	113	146	135.6	144
SID Lysine (g/FU)	6.7	12	10.8	10.6
Crude protein (%)	14.8	20.5	18.8	

Common approaches – Feed uptake

Special measures to increase feed	# farms
intake after weaning	# Idillis
Extra feeding on the floor	10
Extra feeding spaces in troughs	5
Extra drinking spaces	4
Supply with milk products	3
Gruel feed	2
Other measures	2
No special measures	2

Common approaches – Trained personnel

Employment period:

20/26 farms: Manager of piglets employed more than a year

Experience:

18/26 farms: Manager of piglets has worked with piglets for more than 3 years

Summary

- The goal is cost-effective solutions without increasing antibiotic usage
- Not an easy task for the majority of Danish farms
- Zinc is still a common approach to control PWD in DK
- Zinc usage dropping reduced doses is the main driver
- Farms without medicinal usage of zinc have:
 - Reduced protein levels in piglet diets
 - Focus on feed intake after weaning
 - Trained personnel with a longer employment period stability

No common solutions

– each farmer needs to learn what works at his/her farm!

FORBERED DIG TIL UDFASNINGEN AF ZINK

Vælg det emne, du vil vide mere om

HVOR KLAR ER DU? TAG TESTEN OG FÅ SVARET >

www.pigresearchcentre.dk

